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Roll coating is distinguished by the use of one or more gaps between
rotating cylinders to meter a continuous liquid layer and to apply it to a
continuous flexible substrate. Of the two rolls that make a forward-roll coating
gap, one is often covered by a layer of deformable elastomer. Thin films can
be obtained without the risk of clashing two hard rolls. Liquid carried into
the converging side of the gap can develop high enough pressure to deform
the resilient cover, which changes the gap geometry and thus alters the velocity
and pressure fields. The complete understanding of the flow in this situation
is vital to the optimization of this widely used coating method; however, this
elastohydrodynamic action is not well understood. The situation is similar to
what is called the Soft-Elastohydrodynamic Lubrication regime (Soft EHL);
however, the range of minimum distance between the rotating rolls, roll
speed, and therefore flow rate through the gap in the roll coating process is
one to three orders of magnitude larger than the typical values reported in
previous work on Soft EHL. Earlier works on deformable roll coating ana-
lyzed the action with both the lubrication approximation and the full Navier–
Stokes solution and different one-dimensional models of roll cover deforma-
tion. In order to test the accuracy of the past approaches, and to evaluate
the relationship between the empirical constant used in the one-dimensional
model to the relevant physical parameters, a complete, two-dimensional for-
mulation has to be employed for both the liquid flow and the solid deforma-
tion. In this work, the flow between a rigid and a deformable rotating roll
was examined by solving the complete Navier–Stokes system coupled with
a non-linear plane-strain model of the roll cover deformation. The approxi-
mate and computationally cheaper approach is evaluated in which the compli-
ant wall is represented by an array of radially-oriented Hookean springs.
The equation system was solved by the Galerkin/finite element method; the

449

0021-9991/97 $25.00
Copyright  1997 by Academic Press

All rights of reproduction in any form reserved.



450 CARVALHO AND SCRIVEN

resulting set of non-linear algebraic equations of the fully coupled problem
was solved by Newton’s method with initialization by pseudo-arc-length con-
tinuation as parameters were varied. Results show how roll deformation
affects the total flow rate and forces on the rolls and illustrate how a de-
formable roll can be used to obtain thin coated layers with much less sensitivity
to roll runout than those obtained with rigid rolls. Q 1997 Academic Press

Key Words: deformable roll coating; liquid/solid interaction; non-linear
deformation; free boundary problem; Galerkin’s method.

1. INTRODUCTION

Roll coating processes are characterized by liquid flow in a narrow gap or nip
between rotating cylinders or rolls. The liquid is metered and then applied to a
continuous flexible substrate. Despite the variety of configurations, any such process
can be broken into different parts [1]. In order to understand the whole process,
one needs to study the individual flows between pairs of rolls in forward and reverse
mode. Benjamin et al. [2] used simple mass balances to combine the information
derived from the analysis of these unit flows between each pair of rolls in order to
correlate the final film thickness (or coat weight) with roll separation and speed
ratio at each roll pair in a system of rolls.

The flow between two rigid rolls has been extensively studied in the past [1, 3].
However, usually one of the rolls of each gap is covered with a resilient layer that
deforms during operation. The main purposes of using a deformable roll cover are:
(i) to avoid the risk of clashing two hard rolls; (ii) to meter much thinner films than
ordinarily can be achieved by rigid roll coating; (iii) to reduce or delay the onset
of the ribbing defect; and (iv) to transfer an already metered film. The deformation
of the roll cover affects the shape of the boundaries of the coating flow. That flow
generates pressure and viscous stresses, which tend to deform the roll cover. Hence,
the viscous liquid flow and the deformation of the roll cover are coupled, which
characterizes an elastohydrodynamic action. The main goal of theoretical analysis
of the flow in a deformable roll coating gap is to determine the flow rate through
the gap (that can be translated to a wet film thickness) as a function of roll speeds,
roll position, and material properties.

A similar situation occurs in elastohydrodynamic lubrication [4] and more particu-
larly in what is called soft elastohydrodynamic lubrication. Several theoretical mod-
els have been used to study this problem. In all of them, the liquid motion is
described by Reynolds’ equation of lubrication. Dowson and Higginson [4] adopted
a simplified elastic deformation model (called the constrained column model), in
which the deformation at each point is only a function of the pressure in that
location. The same approach was adopted by Bennett and Higginson [5] to study
the problem of a rotating steel cylinder loaded against a stationary plane covered
with a deformable layer. Johnson [6] proposed that the proportionality constant
on the one-dimensional model is a function of the Poisson’s ratio n, the elastic
modulus E, and the layer thickness L, and it is given by

K ; P(x)
d(x)

5
(1 2 n)

(1 1 n)(1 2 2n)
E
L

.
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It is clear that this expression cannot be used for incompressible materials, i.e., n 5

1/2. Hooke [7] used a deformation model based on the asymptotic linear elastic
solution of a compliant thin layer presented by Meijers [8]. The deformation in
each point is a function of the entire pressure distribution. Dowson and Jin [9]
compared the two deformation models and suggested that the constrained column
model (one-dimensional model), with the proportionality constant proposed by
Johnson [6], can be applied for Poisson’s ratio less than 0.45 and for the ratio of
loading width and layer thickness larger than 2. This result was expected, because
when the proportionality constant proposed by Johnson [6] is used to model incom-
pressible materials, the deformation at each point vanishes no matter how large
the loading force. It is important to notice that the range of parameters at which
these soft elastohydrodynamic solutions were obtained is very different from the
operating conditions of deformable roll coating gaps: In the soft EHL examples
presented, the compliant layer thickness was in the order of 1.5 mm, roll speed of
0.02 m/s, and film thickness in the order of 1 em. In roll coating, the rubber cover
thickness is in the order of 1 cm, roll speed varies typically from 1 to 10 m/s, leading
to film thickness of 10 to 100 em.

The thin elastic layers on soft elastohydrodynamic, deformable roll coating, as
well as many other applications, are subjected to very large deformation. To give
an accurate description of the deformation of the compliant layer, a complete two-
dimensional finite deformation (non-linear elasticity) formulation has to be used.
This was done by Batra [10], who analyzed the deformation of a rubber covered
roll indented by a rigid cylinder. He used a Mooney–Rivlin constitutive equation
to describe the behavior of the compliant layer. Bapat and Batra [11] extended the
formulation for a non-linear viscoelastic constitutive equation. Oden and Lin [12]
presented a formulation for the finite steady-state deformation of a rolling cylinder
and solved the problem using a finite element method. These works were on dry
contact between the cylinders, i.e., there was no liquid flow.

Coyle [13, 14] launched theoretical and experimental analysis of the elastohydro-
dynamics of roll coating. He approximated the behavior of a roll cover by a one-
dimensional, linearly elastic model (the same approach used by Dowson and Higgin-
son [4]), the behavior of the coating liquid by lubrication flow theory, and the film
split region by Reynolds’ condition. Carvalho and Scriven [15] took up Coyle’s
analysis and examined the differences between the use of one-dimensional linear
and non-linear elastic models and two-dimensional plane-strain theory for which
the deformable layer was regarded as an infinite elastic slab. They, too, approxi-
mated the flow in the coating gap by lubrication theory.

The lubrication approximation is not valid far from the region of closest approach
between the rolls and near the free surfaces, where the flow is two-dimensional.
To describe better the liquid flow in a coating gap, the full Navier–Stokes system
of equations has to be solved. Carvalho and Scriven [16, 17] used the one-dimen-
sional spring model coupled with the complete Navier–Stokes formulation for free-
surface flows and linear stability analysis to study the three-dimensional stability
limit of a film-split flow between a rigid and a deformable roll. The results obtained
agree qualitatively with experimental evidences on the effect of rubber covered
rolls on the behavior of the coating gap. However, two important issues are not
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addressed: (1) What are the limitations of the simplified and computationally
cheaper spring model? (2) What is the relation between the empirical spring constant
and the rubber cover properties? Most roll cover materials are nearly incompressible
rubber (n P 1/2). With this condition, the relation proposed by Johnson [6] cannot
be used.

This work addresses these two important issues. The flow between rigid and a
deformable rotating rolls fully submerged in a liquid pool is studied. Although this
configuration does not represent a coating method, it does approximate well the
flow in the gap region and it can be used to predict the flow rate through the coating
gap. The flow is described by the complete Navier–Stokes system of equations.
The deformation of the compliant roll cover is described by two different models:
(i) independent, radially oriented springs that deform in response to the traction
force applied at the extremity of each, i.e., the one-dimensional model used by
previous researchers, and (ii) a plane-strain deformation of an incompressible
Mooney–Rivlin material (non-linear elastic model). A Galerkin/finite element
method is used to solve the system of differential equations. The resulting fully-
coupled non-linear problem is solved by Newton’s method, i.e., all the fields in the
liquid and solid domain are solved simultaneously. With an appropriate initial guess,
obtained here by pseudo-arc-length continuation, convergence could be achieved
in four to five iterations.

Based on the flow rate predictions of both models, an empirical relation between
the spring constant of the one-dimensional model and the roll cover thickness and
elastic modulus is proposed.

2. DEFINITION OF THE SYSTEM

The liquid flow between a rigid roll and a deformable roll, both rotating and
fully submerged in a pool is sketched in Fig. 1(a). Roll A is rigid and roll B is
covered with a rubber layer. The roll surfaces move in the same direction in the
gap region.

The nomenclature introduced by Coyle [13] is used here. If the center-to-center
distance is larger than the sum of the roll radii, there is a clearance between the
undeformed roll surfaces. Such situations are called positive gaps. If the center-to-
center distance is smaller than the sum of the roll radii, the rolls would interfere
were they undeformable. Such situations are called negative gaps. For convenience,
both the clearance and the interference between undeformed rolls are called 2H0 ,
as sketched in Fig. 1(b) and (c).

Each gap in a roll coater can be operated in two ways. One is to keep the axes
of the two rolls parallel, with one axis fixed and the other movable in response to
externally imposed loading. This is called a load-controlled operation. The other
way is to fix the axes of both rolls. This is called a fixed-gap operation. In analysing
roll coater gaps, it is convenient to suppose that the center-to-center distance
between the rolls is set, and to evaluate the loading force required to maintain that
distance. This tactic is used here, but it in no way limits the results to fixed-
gap operation.
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FIG. 1. (a) Sketch of flow between two rolls fully flooded in a liquid pool. (b) Detail of nip region
in positive gaps; i.e., clearance of 2H0 between undeformed rolls. (c) Detail of nip region in negative
gaps; i.e., interference of 2H0 between undeformed rolls.

2.1. Equations of Liquid Flow

The governing equations give rise to a free boundary problem, because the posi-
tion of the deformable roll surface is unknown a priori. The basis of treating such
problems is recounted briefly here. Fuller accounts were given by Kistler and Scriven
[18, 19], Christodoulou and Scriven [20], and recently by Sackinger et al. [21].

Coating flows are laminar, and ideally steady and two-dimensional. The motion
of the liquid is described by the Navier–Stokes equation and continuity equation
of incompressible flow
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FIG. 2. Sketch of domains for flows between a rigid and a deformable roll fully submerged: (a)
Spring model and (b) Plane-strain model.

rv · =v 2 = · s 5 0 and = · v 5 0 (1)

together with appropriate boundary conditions. r is the density of the liquid. s

represents the stress tensor (Cauchy stress tensor), the sum of pressure and viscous
stress; for a Newtonian liquid it is,

s 5 2pI 1 e(=v 1 (=v)T),

where e is the liquid viscosity.
The deformation of the compliant roll cover is described by two different models,

which are set out in Sections 2.3 and 2.4. The first model is a series of independent
radially oriented springs. It is a simple approximation of the roll cover deformation.
The main advantage is that the elastic response enters as a boundary condition on
the liquid flow. The drawback of the complete description, i.e., the non-linear, plane
strain formulation of the deformable wall, is that the deformation and velocity
field of the entire roll cover have to be found, a considerably larger and more
complex computation.

Figure 2 shows the domain of calculation. When the spring model (Fig. 2(a)) is
used, there is only a liquid domain VL . For the plane-strain model (Fig. 2(b)) there
are a liquid domain VL and a solid domain VS .

At the rigid roll surface (1), the no-slip and no-penetration conditions apply, viz.,

v 5 VRoll 5 gRt, (2)
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where t is the unit tangent vector to the roll surface, in the direction of rotation;
and g is the angular speed of the roll, and R, its radius.

Along the inflow boundary and the outflow boundary (2), the pressure is as-
sumed constant:

p 5 PIN and p 5 POUT . (3)

In the present analysis, both the inlet and outlet pressures were set to zero, although
it could be instructive and useful to investigate the effects of pressure difference
between the inflow and outflow sides. The inflow and outflow planes were positioned
such that the total length of the domain analyzed was equal to the radius of the
roll R. The theoretical predictions were virtually insensitive to moving the bound-
aries further away from the plane of the two roll centers.

The boundary conditions applied at the deformable roll surface (3) and (4) are
discussed in Sections 2.3 and 2.4 for both the spring and plane strain models, respec-
tively.

The liquid domain is unknown a priori, i.e., the shape of the deformable roll
surface is part of the solution. In order to solve a free-boundary problem using
standard techniques, the set of differential equations posed in the unknown domain
V has to be transformed to an equivalent set defined in a suitable known reference
domain V0 (see Fig. 4). This is done by the mapping x 5 x(j) that connects the
two domains. Here the unknown physical domain is parametrized by the position
vector x, and the reference domain by j, position in it. The reference domain
adopted is to some extent arbitrary. A common approach in related coating flows
has been to use a simple quadrangular domain tessellated into unit squares. That
is done here.

The boundaries of the reference domain have to be continuously mapped onto
the boundaries of the physical domain; and the mapping has to be invertible, i.e.,

det(=jx) ? 0 for all j [ V0 .

The gradient of the mapping =jx at j in a two-dimensional domain is defined as

=jx ; J 5 1­x
­j

­y
­j

­x
­h

­y
­h
2 ,

where uJu ; det(J) is the Jacobian of the transformation.
Spatial derivatives with respect to coordinates of the physical domain x and y

can be written in terms of derivatives with respect to the coordinates of the reference
domain j and h by using the inverse of the gradient of the mapping:
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1­f

­x

­f

­y
25 J21 1­f

­j

­f

­h
2 .

Area integrals over the physical domain are related by

dV 5 uJu dV0 .

The construction of the mapping used in this work is discussed in the following
section.

Both the modified set of differential equations that describe the velocity and
pressure fields and the equations that define the mapping are solved by the Galerkin/
finite element method on the reference domain V0 .

2.2. Mapping from Physical to Reference Domain: Mesh Generation Scheme

Finding a mapping that satisfies both requirements, viz., continuous mapping of
boundaries and invertibility, is not always an easy task. Theoretical research on
mesh generation addresses the issues of existence and uniqueness of such mappings
[22–24]. The mapping used here is the one chosen earlier by de Santos [25]. It
relies on elliptic partial differential equations to relate points of the physical domain
to points of the reference domain. One way of choosing the differential equation
that describes the mapping is to derive it from an extremum principle. This method
consists of minimizing a functional that measures the departure from whatever mesh
properties are deemed desirable, such as smoothness, orthogonality, and spacing.

de Santos [25] has shown that a functional of weighted smoothness can be used
successfully to construct mesh for viscous free surface flows. The inverse of the
mapping that minimizes the functional is governed by a pair of elliptic differential
equations similar to the ones encountered in diffusional transport with variable
diffusion coefficients. The potential of j-coordinate and that of h-coordinate satisfy
the following equations:

= · [Dj =j ] 5 0 in V, = · [Dh =h] 5 0 in V. (4)

Dj and Dh are diffusion coefficients of coordinate potentials j and h. They control
the spacing of whatever curves of constant j and constant h are chosen to tessellate
the region into finite elements. The diffusion coefficients can be constructed in
order to obtain a desired mesh spacing of curves at equal increments of one potential
or the other.

Boundary conditions are needed in order to solve the second-order partial differ-
ential equations that describe the mapping from the reference domain to the physical
domain. At the rigid roll surface, the shape and location of the roll were prescribed.
The position of the deformable roll surface was implicitly defined by a force balance.
The nodes were distributed along each boundary by means of distribution functions.
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FIG. 3. Sketch of spring model: (a) deformation of the wall, (b) surface velocity.

2.3. Spring Model of Deformable Walls

A simple way of describing the deformation of a resilient wall is to assume that
the displacement of each point on the undeformed wall is solely normal to the
undeformed wall and depends on the loading at the location of that point on the
deformed wall. Such a model amounts to a continuous distribution of independent
springs oriented perpendicular to the undeformed wall, as sketched in Fig. 2(a).
The disadvantages of this model are that it represents neither the shear stress that
the liquid exerts, nor the incompressibility or limited compressibility (i.e., effects
of the Poisson ratio) of the compliant wall.

In the Hookean version of this model, the displacement in the direction normal
to the undeformed surface (radial direction in the case of cylindrical roll cover) is
a linear function of the normal component of the hydrodynamic stress, as depicted
in Fig. 3(a):

N0 · (n · s) 5 2K DX. (5)

DX ; N0 · (x 2 X0) is the normal displacement of the wall; X0 is the position of a
point on the wall in its undeformed state; N0 is the unit vector normal to the
undeformed wall at X0 ; n is the unit normal vector to the deformed wall at x; s is
the Cauchy stress tensor in the liquid, and K is the proportionality constant, referred
to simply as spring constant, which is related to the elastic properties of the roll cover.

The loading force per unit area, or traction, that the liquid exerts on the resilient
wall is n · s. If the liquid is Newtonian, the loading force is
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n · s 5 2pn 1 en · [=v 1 (=v)T ],

where p is the liquid pressure, and v its velocity.
The liquid velocity at a place on a compliant wall matches the velocity of the

wall there, owing to the no-slip and no-penetration conditions. The velocity distribu-
tion along the surface of the deforming wall depends on how the wall is deforming.
If as it moves, the wall deforms in such a way that its profile is steady, then its
material velocity at every point is tangential. It is convenient to break its material
velocity into two parts: a rigid-body motion, in particular the rigid rotation of
the springs, which are arrayed radially around the axis of rotation; and a radial
displacement motion that arises in the compression and expansion of the springs
as they turn. The magnitude of the speed at each point is

V 5
VRig

cos u
5

VRig

n · N0
. (6)

VRig is the component of the velocity that describes the rigid motion of the springs.
For the case of radially oriented springs rotating at an angular speed of g, VRig ;
g 3 r. Here N0 is the unit vector normal to the undeformed wall (radial direction
in the particular case of rolls); n is the unit vector normal to the deformed wall at
x, as sketched in Fig. 3(b).

2.4. Plane-Strain Deformation of Resilient Walls

2.4.1. Kinematic. In order to describe fully the deformation of the roll cover,
the current (deformed) configuration has to be compared with some convenient
reference configuration (even if the roll cover never assumes that configuration).
A natural choice is the configuration in which the stress tensor vanishes over the
entire cover. This is called the stress-free state.

This work focuses on steady-states in which the deformation of no part of the
material changes with time in the chosen ‘‘laboratory’’ frame of reference, even
though the material is moving. A natural reference configuration for these states
is the configuration assumed by the (deformable) wall when it is undeformed and
moving as a rigid body. A useful example is Oden and Lin’s [12] analysis of rolling
dry contact. The location X in the reference configuration at a time t of the material
particle that was at X0 in the reference configuration at t 5 0 varies with time in
a known manner: the undeformed wall by definition moves as a rigid body:

X 5 X(X0 , t), Y 5 Y(Y0 , t), Z 5 Z(Z0 , t).

The mapping x 5 x(X) takes the reference configuration of the deformable wall
(at time t) into the current (deformed) state of the wall (at the same time t). The
velocity field of the deformable wall can be evaluated by differentiating the current
position x of particle X0 , i.e., v ; (­x/­t)x0

5 F · (­X/­t)x0
, where F ; (­x/­X) is

the deformation gradient tensor. In this relation, the cartesian components of veloc-
ity are related to the material coordinates by



459FLOWS IN FORWARD DEFORMABLE ROLL COATING GAPS

u ; S­x
­tDx0

5 S ­x
­XDt

S­X
­t Dx0

1 S­x
­YDt

S­Y
­t Dx0

1 S­x
­ZDt

S­Z
­t Dx0

v ; S­y
­tDx0

5 S ­y
­XDt

S­X
­t Dx0

1 S­y
­YDt

S­Y
­t Dx0

1 S­y
­ZDt

S­Z
­t Dx0

w ; S­z
­tDx0

5 S ­z
­XDt

S­X
­t Dx0

1 S­z
­YDt

S­Y
­t Dx0

1 S­z
­ZDt

S­Z
­t Dx0

.

(­X/­t)x0
, (­Y/­t)x0

, and (­Z/­t)x0
are defined by the rigid body motion of the wall

when it is undeformed.
For the case of a deformable roll rotating at an angular velocity of g, the velocity

field on the rubber roll cover is evaluated as follows:

u ; S­x
­tDx0

5 S ­x
­XDt

S­X
­t Dx0

1 S­x
­YDt

S­Y
­t Dx0

5 2rg sin(f 1 gt) 5 2Yg

(7)

v ; S­y
­tDx0

5 S ­y
­XDt

S­X
­t Dx0

1 S­y
­YDt

S­Y
­t Dx0

5 rg cos(f 1 Vt) 5 2Xg.

2.4.2. Equilibrium equations. If the acceleration and body forces are negligible,
the equilibrium equation in the current (deformed) configuration is simply

= · s 5 0, (8)

where s is the Cauchy stress tensor. It is related to the deformation by an appropriate
constitutive relation. In ordinary materials, the Cauchy stress tensor is a symmetric
tensor. It pertains to the current configuration, and so it is said to be a true measure
of the current state of stress. Hence it can be related only to a measure of deforma-
tion from the current configuration, for example by the left Cauchy–Green deforma-
tion tensor B.

However, the deformed configuration is unknown a priori; in particular, finite
roll cover deformation constitutes an inherently free boundary problem. Therefore,
it is highly convenient to map the equation system of the deformed configuration
to the known reference configuration so as to be able to use well-established methods
of solving boundary value problems. To begin with, the equilibrium equation (8)
has to be reexpressed in terms of quantities defined in the reference domain. This
is accomplished by using Piola’s transformation (see [26]), which is illustrated in
the following sequence of tensor manipulations:

E
VS

= · s dV 5 0 ⇒ E
GS

n · s dF 5 0

⇒ E
G

N · F21s dG 5 0 ⇒ E
G

N · T dG 5 0 ⇒ E
V

=X · T dV 5 0.

VS and GS are the area and the line boundary of the wall in its current (deformed)
state. V and G are the area and line boundary of the wall in the zero-stress configura-



460 CARVALHO AND SCRIVEN

tion that serves as the reference configuration. n and N are the outward unit normal
vectors of the current and reference configurations, respectively.

Hence, the equilibrium equation in the reference domain becomes

=X · T 5 0, (9)

where T ; F21 · s is the first Piola–Kirchhoff stress tensor. It is an asymmetric tensor.
It is relevant to point out here the difference between the reference domain V0 ,

introduced in Section 2.1 to solve the free boundary viscous flow problem there, and
the zero-stress reference configuration V used here, which also defines a reference
domain. In the former, the reference domain is always a combination of quadrangu-
lar regions and is almost completely unrelated to the physics of the system. In the
latter, the reference configuration does not need to be quadrangular, but it does
need to be the zero-stress state, even if the body never assumes that configuration.
de Almeida [27] and Sackinger et al. [21] have investigated the idea of using stress-
free states and deformations of them in hypothetical elastic materials to generate
reference states for free boundary flows.

The loading responsible for the solid deformation is the liquid traction. At the
interface between solid and liquid the traction vectors exerted by each on the other
must balance:

N · T 5 2nl · s l 5 pnl 2 enl · [=v 1 (=v)T ]. (10)

N is again the outward unit normal vector in the zero-stress configuration of the
solid, T is the first Piola–Kirchhof stress tensor, nl is the outward unit normal vector
of the liquid domain, and sl is the (Cauchy) stress in the liquid.

In order to find the current state of the deformed wall x, the stress tensor has
to be related to a measure of deformation by a constitutive equation.

2.4.3. Constitutive equation. As pointed out in the previous section, any strain
measure to which the Cauchy stress tensor is to be related needs to pertain to the
current configuration. For an isotropic elastic solid the most general representation
is [26]

s 5 f (B) 5 f0(IB , IIB , IIIB)I 1 f1(IB , IIB , IIIB)B 1 f2(IB , IIB , IIIB)B21.

IB , IIB , and IIIB are the invariants of the left Cauchy–Green tensor B.
If the solid is incompressible, the third invariant is equal to unity (IIIB 5 1), and

the foregoing expression simplifies to

s 5 2fI 1 b0(IB , IIB)B 1 b1(IB , IIB)B21.

If the coefficients b0 and b1 are constant, this reduces to the equation of the
Mooney–Rivlin material, a model of certain elastomers:

s 5 2fI 1 b0B 1 b1B21. (11)



461FLOWS IN FORWARD DEFORMABLE ROLL COATING GAPS

If b1 5 0, the constitutive relation reduces to what is called neo-Hookean material
or ideal elastomer:

s 5 2fI 1 b0B.

f is a scalar, pressure-like function that is related to the incompressibility constraint
IIIB 5 1 (just as pressure in an incompressible liquid is related to the equation, or
constraint, = · v 5 0).

The roll cover is generally very wide compared to its thickness. If the side
effects are disregarded, the roll cover is in a plane-strain deformation state, i.e.,
the deformation in the transverse direction vanishes and the derivatives of all
quantities in that direction also vanish:

z 5 Z and
­(p)
­Z

5 0.

Batra [10] showed that in the plane-strain deformation, the displacement and
the Cauchy stress components in the X–Y plane of a Mooney–Rivlin material
depend on the material constants b0 and b1 through their difference b0 2 b1

alone. Therefore, the response of a neo-Hookean material is the same as that of a
Mooney–Rivlin one, provided the coefficient b0 used in the neo-Hookean equation
is equal to the difference between b0 and b1 used in the Mooney–Rivlin equation.

Because the equation system is solved in the reference domain, the appropriate
equilibrium equation to be used is Eq. (9). Consequently, the first Piola–Kirchhoff
stress tensor of a Mooney–Rivlin material, Eq. (10), has to be evaluated. This is
done by simply premultiplying the Cauchy stress tensor by the inverse of the
deformation gradient tensor:

T ; F21 · s 5 2fF21 1 b0FT 1 b1C21 · F21.

This expression, with p* ; f 2 3b1 , can be rewritten as

T 5 2p*F21 1 b0FT 2 b1[tr(C)FT 2 C · FT], (12)

where tr(C) is the trace of the right Cauchy–Green deformation tensor; and p* is
a new pressure-like scalar function that relates to the incompressibility equation
IIIC 5 1. It can be written in terms of the pressure p in Mooney–Rivlin material,
which is incompressible:

p* 5 p 1 b0 2 2b1 .

From another point of view the incompressibility equation is a ‘‘constraint’’ and
p* is a ‘‘Lagrange Multiplier.’’

In this approach, the displacements and hence the positions of material points
throughout the deformed roll cover are calculated, in contrast to the spring model,
where only the radial displacements of points at the solid/liquid interface are com-
puted.
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FIG. 4. Sketch of mappings from the liquid domain to the reference domain (VL R V0); from the
current solid configuration to the zero-stress state (VS R V); and from the zero-stress state to the
computational reference domain (V R V0).

There are two distinct though coupled domains in the problem: one where the
liquid flow occurs, which is mapped by the mesh generation equations to a reference
domain where the Navier–Stokes system is solved; and the other where the roll
cover deformation occurs, which is mapped to the stress-free domain where the
equations of elasticity and the velocity field of the solid wall are solved. The differ-
ence is that the solution of the elasticity equations is itself the mapping, which
therefore is not considered separately (see Fig. 4).

In summary, on the solid domain VS , the deformation of the rubber is governed
by the equilibrium equations together with the Mooney–Rivlin constitutive relation
and the incompressibility constraint:

=X · [2p*F21 1 b0FT 2 b1(tr(C)FT 2 C · FT)] 5 0 and det(F) 5 1. (13)

The displacement vanishes at the interface where the rubber layer is attached to
the rigid core of the roll (6) (cf. Fig. 2):

x 2 X 5 0. (14)

x and X are the coordinates in the laboratory frame of a material particle at the
current and reference configuration, respectively.

At entrance and exit boundaries (5), the traction is set to zero, as a bald approxi-
mation:

N · T 5 0. (15)
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N is the unit normal vector to the entrance or exit of the reference domain, and T
is the first Piola–Kirchhoff stress tensor.

At the interface between the liquid and solid domain (4), the no-slip/no-
penetration condition and a force balance are applied:

vliq 5 vsol and N · T 5 2n · s. (16)

The parameters that govern this system are:

Dimensionless undeformed clearance (or interference): H0/R

Reynolds Number: Re ; rVR/e

Roll Speed Ratio: S ; gA/gB

Elasticity Number: Es ; eV /ER

Dimensionless roll cover thickness: L/R.

gA and gB are the angular velocities of rolls A and B; 2H0 is either the clearance
or the interference between the undeformed rolls; R is the roll radius; e is the
liquid viscosity; V 5 (VA 1 VB)/2 5 (gA 1 gB)R/2 is the average linear velocity
of the roll surfaces, L is the thickness of the roll cover, and E is its elastic modulus.
For a Mooney–Rivlin material, it is given by E 5 4(b0 2 b1). The harder the roll
cover, the smaller the elasticity number; in the limit of rigid rolls, the elasticity
number is zero. In the spring model, the elastic modulus E and the deformable
layer thickness L are lumped in a single parameter: the spring constant K. In this
situation, a modified elasticity number, Ne* ; eV /KR2 is useful. The analog of
Ne* for the plane strain formulation is simply the product of the elasticity number
and the ratio of the rubber cover thickness to the roll radius: Ne ; Es 3 L/R 5

eVL/ER2.
In the calculations presented here, the speed ratio S is kept constant and equal

to unity. Positive and negative gaps, different roll cover hardnesses, i.e., elasticity
numbers, and roll cover thicknesses are explored. The results show how the flow
rate through the gap varies with these parameters, and how to relate the empirical
spring constant K in the linear spring model to roll-cover properties, viz., elastic
modulus and thickness.

The appropriate length scale in the direction transversal to the main flow is the
actual distance between the two surfaces, that is unknown a priori and part of the
solution. Even though all the results are presented in dimensionless variables, the
equations that govern this situation were solved in their dimensional form.

3. SOLUTION METHOD

The system of partial differential equations presented in the previous section is
solved by Galerkin’s method with finite element basis functions, the basis function
set being progressively increased (‘‘refinement of the mesh’’) until further increase
changed the approximation to the ultimate solution less than the desired accuracy.
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3.1. Galerkin’s Method

The weighted residuals of Galerkin’s method of solving partial differential equa-
tion systems amount to what is called the weak form of a system. A weighted
residual of a differential equation is obtained by multiplying it by a ‘‘test’’ function
and integrating the product over the domain. If the highest-order derivatives in the
differential equation arise from the divergence operator operating on gradients, as
in the momentum balances and equilibrium force balances above, applying the
divergence theorem replaces the divergence operator by surface integrals in such
a way that the basis functions used to represent the solution of the differential
equation need not be continuously differentiable. In Galerkin’s method, the un-
known fields are represented by the same basis functions as are used as the
weighting functions.

In the procedure followed here, the weighted residual equations defined over
the liquid domain VL have to be transformed to equivalent forms on the known
(and fixed) reference domain V0 . This mapping is represented by F1 in Fig. 4. The
Jacobian of F1 is denoted by uJu,

uJu ; ­x
­j

­y
­h

2
­y
­j

­x
­h

.

The resulting set of weighted residuals of the equations (x- and y-momentum,
continuity, and x- and y-mapping) posed in the reference domain V0 is

RMx
i 5 E E

V0
HRe fi Su

­u
­x

1 v
­u
­yD1

­fi

­x S2p 1 2
­u
­xD1

­fi

­y S­u
­y

1
­v
­xD

2 St gxfiJ uJu dV0 2 E
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D dG0 (17a)
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The weighting functions fi associated with the momentum equations and mesh
generation equations were bi-quadratic, and xi , related with the continuity equation
was piecewise linear discontinuous.

When the spring model is used to describe the deformation of the roll cover, the
force balance at the deformable wall represented by Eq. (5) is also applied in an
integral way. There one of the residuals of the mesh generation equations is replaced
by the weighted residual of the normal stress balance:

Rx
i 5 E

G0
H 1

K
N0 · (n · s) 1 N0 · (x 2 X0)JFi

dGdw

dG
dG 5 0.

The weighting functions Fi are chosen to be displaced Dirac–delta functions, such
that the residuals become

Rx
i 5 H 1

K
N0 · (n · s) 1 N0 · (x 2 X0)JU

xi

5 0. (18)

When the plane-strain model is used, the velocity and deformation fields over
the entire roll cover have to be calculated. The differential equations that describe
these fields over the solid domain VS are written in the zero-stress configuration
V, which is fixed. From the numerical point of view, it is convenient to integrate
the momentum residuals of both the liquid flow and the elasticity equations over
the computational domain V0 . For that, a mapping X 5 X(j) from V0 to V has to
be constructed. It is represented by F2 in Fig. 4. Unlike F1 , this mapping is known
and it simply represents a change of domain of integration. The Jacobian of this
transformation is denoted by uJ*u.

The resulting set of weighted residuals of the equations of x-position and y-
position, and incompressibility, in the reference domain V0 , is

Rx
i 5 2E E

V0
FTxX

­fi

­X
1 TxY

­fi

­XG uJ*u dV0 1 E
G0

fi(N · T)x SdG

dG0
D dG0 (19a)
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FTyX

­fi
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1 TyY

­fi

­XG uJ*u dV0 1 E
G0

fi(N · T)y SdG

dG0
D dG0 (19b)

Rp*
i 5 E E

V0
F ­x

­X
­y
­Y

2
­x
­Y

­y
­X

2 1G xiuJ*u dV0 . (19c)

With the complete two-dimensional description, the force balance at the de-
formable wall represented by Eq. (16b) is applied as a natural boundary condition
on Eqs. (19a) and (19b): The loading force acting on the elastic roll cover N · T
that appears in the line integrals of the weighted residuals is replaced by the negative
of the liquid traction 2n · s at the deformable wall. The weighting functions fi

were bi-quadratic, and xi were piecewise linear discontinuous.
All of the integrals are evaluated by Gaussian quadrature with three Gauss points

per element in each direction of integration [27].
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FIG. 5. Mesh of finite elements used with Galerkin’s solution method: 350 elements and 7014 degrees
of freedom.

3.2. Solution of the Non-linear System

Once the field variables are represented in terms of the basis functions, the system
of partial differential equations, Eqs. (17) to (19), reduces to simultaneous algebraic
equations for the coefficients of the basis functions of all the fields. This set of
equations is non-linear and sparse. It is solved by Newton’s method, which requires
evaluation of the full Jacobian matrix, viz.,

u(k11) 5 u(k) 1 du

J(du) 5 2R.

u is the vector of the unknown coefficients of the basis functions for the velocity,
pressure, and nodal positions. R is the vector of weighted residuals, given by Eqs.
(17) to (19), and J is the Jacobian matrix of sensitivities of the residuals to the
unknowns, i.e.,

Jij ;
­Ri

­uj
.

The iteration proceeded until iduiL2
1 iRiL2

, 1027. At each Newton iteration,
a linear system of equations was solved. The Jacobian matrix was factorized into
a unit lower triangular matrix L and a unit upper triangular matrix U by a fron-
tal solver.

Newton’s method converges quadratically close to the solution. However, it can
fail to converge if the initial guess is not close enough to the solution or if the
solution does not exist for a given set of parameters. In order to improve the
likelihood of convergence and to obtain solutions around turning points, a pseudo-
arc-length continuation method was employed [28].

The domain of liquid flow was divided into 210 elements, and the domain of
solid deformation (for the plane-strain model), into 140 elements.

The number of simultaneous equations when the spring model formulation was
used was 4322, and when the plane strain model was used it was 7014. The additional
equations governed the roll cover deformation and its velocity. A sample mesh for
the plane-strain calculation is illustrated in Fig. 5. The dark region denotes the solid
domain. The computations were made on a Cray X-MP.
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FIG. 6. Comparison of predicted flow rates with two different meshes: (a) 350 elements; (b) 600
elements. Es 5 2.5 3 1026 and L/R 5 0.1.

Figure 6 illustrates the comparison of predicted flow rates with two different
meshes: The one illustrated in Fig. 5 and used throughout this paper and a more
refined one, that consisted of 600 elements, leading to a system of 11900 equations.
The predicted flow rate was virtually insensitive to mesh refinement; it only changed
in the fourth significant figure.

4. RESULTS AND DISCUSSIONS

4.1. Predictions of Plane-Strain Model

The flow through the deformable gap was evaluated at different clearances and
interferences H0/R, elasticity number Es ; eV /ER, and roll cover thickness L/R.

Figure 7 shows the streamlines of the flow at different gaps (positive and negative)
and elasticity number Es 5 2.5 3 1026 and thickness L/R 5 0.1, i.e., Ne ; Es 3

L/R 5 eVL/ER2 5 2.5 3 1027. Flow states (a) and (b) have positive gaps, i.e.,
clearance between the undeformed surfaces; and flow states (c) and (d) have nega-
tive gaps, i.e., the roll surfaces would be in interference if they were rigid. If the
rolls are far apart, the pressure that develops is not strong enough to deform the
roll cover and the gap behaves as if it were rigid. As the rolls are pressed against
each other, the pressure in the converging–diverging channel rises and the roll
cover deforms more and more. At large interference (negative gaps), the liquid
layer between the two rolls is so thin as to be almost imperceptible in the plots.

Figure 8 shows the dimensionless flow rate q* ; Q/2VR at rubber cover thickness
L/R 5 0.1 versus elasticity number Es, and center-to-center position, characterized
by H0/R. At large enough positive gaps, the curves for different elasticity numbers
merge into a single line that matches the rigid-roll predictions, because the liquid
pressure is not high enough to deform the rubber cover. As the rolls are pushed
together, the flow rate falls. At negative gaps, the flow rate sensitivity to roll position
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FIG. 7. Streamlines at Es 3 L/R 5 2.5 3 1026, L/R 5 0.1, and H0/R: (a) 5 1022; (b) 5 6 3 1023;
(c) 5 (—) 5 3 1024; and (d) 5 (—) 8 3 1023.

becomes relatively small. This is very important for roll coating operations. It means
that the variation of the liquid layer thickness caused by roll run-out (out-of-
roundness) is much smaller when a deformable roll is used and it diminishes as the
rolls are pressed against each other. At a fixed center-to-center distance, the softer
the roll, i.e., the larger the elasticity number, the larger the flow rate. The softer
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FIG. 8. Dimensionless flow rate predictions of the plane-strain model at different gaps (positive
and negative) and elasticity numbers. L/R 5 0.1. The continuous line represents the solution obtained
with rigid rolls.

the roll, the more it deforms and, therefore, the higher the flow of liquid dragged
through the gap.

As mentioned in Section 2, with the spring model the elastic modulus E of the
roll cover and its thickness L are lumped in a single parameter: the spring constant
K. The modified elasticity number is defined as Ne* ; eV /KR2. The plane-strain
model permits an analysis of the two parameters separately. Figure 9 shows the
dimensionless flow rate as a function of center-to-center distance at roll cover
thicknesses L/R from 0.02 up to 0.2 and different elasticity numbers Es, such that
the modified elasticity number in all cases is Ne ; Es 3 L/R 5 2.5 3 1027. The

FIG. 9. Dimensionless flow rate predictions of the plane-strain model versus gap and roll cover
thickness at modified elasticity number Ne ; Es 3 L/R 5 2.5 3 1027.
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FIG. 10. Dimensionless flow rate predictions of the plane-strain model versus gap and elasticity
number Es. L/R 5 0.02.

flow rate predictions at the same modified elasticity number Ne vary with elasticity
number Es and cover thickness. The thicker cover deforms more and yields larger
flow rates. However, in the range of interference explored here (and commonly
used in roll coating operations), the flow rate predictions are virtually the same for
roll cover thickness larger than L/R . 0.1. These results illustrate a limitation of
the spring model: the elastic modulus and thickness of roll cover cannot be combined
in a single parameter if the roll cover thickness is smaller than L/R , 0.1. Fortunately
the roll cover thickness encountered in roll coating applications are generally on
the order of L/R 5 0.1 (1 cm cover thickness in a 10 cm radius roll) or larger.

Figure 10 shows the dimensionless flow rate as a function of elasticity number
and center-to-center distance at L/R 5 0.02. For thin roll covers, the sensitivity of
flow rate to roll position is much larger than for the case of thicker roll covers. At
high elasticity numbers (soft roll), Es 5 2.5 3 1025 and 5 3 1025 in Fig. 10, a turning
point on the solution path occurs at H0/R 5 8.6 3 1026 and H0/R 5 1.3 3 1023,
respectively. A steady-state solution could not be found beyond these values of
center-to-center distance.

Turning points could also be detected at different roll cover thickness and elastic-
ity numbers. Figure 11 illustrates the solution path at Es 5 2.5 3 1024 and L/R 5

0.1. The rubber cover deforms even at a gap of H0/R 5 0.01 because it is very soft.
As the rolls are pushed against each other, the roll cover deforms more and more
and a small bump is formed downstream of the region of closest approach between
the rolls. The bump is caused by the negative liquid pressure downstream of the
center-to-center line, by the incompressibility condition on the rubber, and also by
the shear force that the liquid exerts on the rubber layer. If the rolls are brought
even closer, a turning point on the solution path occurs at approximately H0/R 5

6.18 3 1023. The deformable roll profile at a flow state beyond the turning point
exhibits an exaggerated bump and the solution is unstable. This behavior was not
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FIG. 11. Solution path with turning point at Es 5 2.5 3 1024 and L/R 5 0.1. Deformable roll profiles
at (a) H0/R 5 1022, (b) H0/R 5 6.18 3 1023, and (c) H0/R 5 7.9 3 1023.

and could not be predicted by the spring model, because that model accounts for
neither the shear stress exerted by the liquid, nor the effects of incompressibility.

Because metering gaps can be controlled by loading rather than by setting the
undeformed gap (load-controlled operation), it is useful to eliminate the latter and
relate the flow rate Q directly to the loading force W. This relation is shown in Fig.
12 at Ne 5 2.5 3 1026. At the high load limit, the results can be fitted well to a
power law:

Q P W 20.39. (20)

Coyle [14] reported an empirical fit of experimental data of wet thickness as a
function of loading force. Although the experimental correlation was not dimension-
ally consistent, the flow rate dependence on loading force was approximately
Q P W 20.43.

4.2. Predictions of the Spring Model

The flow rate through the gap, the streamlines, and the profile of the deformable
roll were evaluated from the solutions at different clearances (or interferences) and
modified elasticity numbers Ne* ; eV/KR2.
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FIG. 12. Dimensionless flow rate predictions of plane-strain model at different loading at Ne 5

2.5 3 1027. The line represents the power-law fit Q P W 20.39 at high loading force.

The streamlines of a series of flows at a modified elasticity number Ne* ; eV/
KR2 of 1027 and different center-to-center distances are shown in Fig. 13. Flow states
(a) and (b) have positive gaps, i.e., clearance between the undeformed surfaces; state
(c) has zero clearance, i.e., the distance between the centers of the rolls is exactly
equal to the sum of the roll radii; and state (d) has a negative gap, i.e., the roll
surfaces would be in interference if they were rigid.

The profile of the deformable roll is shown in Fig. 14 as a function of gap and
modified elasticity number. At a given gap, the larger the elasticity number, i.e.,
the softer the roll, the wider is the distance between the rolls, as expected. At
interference (negative gaps), an almost uniform channel is formed between the rolls.

The dimensionless flow rate q* ; Q/2VR is plotted versus gap (positive and
negative) and modified elasticity number in Fig. 15. The trends are similar to those
of the complete two-dimensional description: (1) At large enough gaps, all curves
merge into the rigid roll prediction; (2) at a fixed gap, the softer the roll (higher
elasticity number), the larger the flow rate; and (3) as the rolls are pressed against
each other, the sensitivity of flow rate to gap diminishes.

Figure 16 illustrates the variation of the flow rate with loading force between
the rolls at Ne* 5 1027. At the high load limit, the results can also be fitted to a
power law:

Q P W 20.34. (21)

Both theoretical predictions reported here (Eqs. 20 and 21), for plane strain and
spring model, agree qualitatively with the experiments; but the plate strain model
gives a better quantitative agreement.

4.3. Evaluation of the Empirical Spring Constant K

The theoretical predictions presented in the previous section already illustrate
limitation of the spring model, viz., for thin cover thickness, i.e., L/R , 0.1, the
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FIG. 13. Streamlines at Ne* 5 1027 and H0/R: (a) 5 1021; (b) 5 2 3 1023; (c) 5 0; and (d) 5 (—)
2 3 1023. The rolls are moving from left to right.

elastic modulus and roll cover thickness cannot be combined in a single parameter.
However, most deformable rolls are in the range at which the approximation is valid.

The calculations with the simplified approach are much cheaper (in memory and
in time) than the complete two-dimensional description of the roll cover deforma-
tion. With the spring model, the average time to perform each step of the Newton
iteration was approximately 4 seconds; with the plane-strain model, the average
time increased to approximately 20 seconds. Therefore, depending on the desired
compromise between accuracy and cost, the spring model can be a valuable alterna-
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FIG. 14. Deformable roll profiles at different modified elasticity numbers Ne* and undeformed gaps
H0/R. At a given gap, the softer the roll, the wider the distance between the rolls’ surfaces.

tive for describing the roll cover deformation. In order to use this simplified ap-
proach, it is important to relate the empirical spring constant K to the properties
of an incompressible roll cover: elastic modulus E and thickness L. As mentioned
before, the relation proposed by Johnson [6] cannot be used, because most roll
cover materials are nearly incompressible.

For the purpose of comparison, the modified elasticity number Ne* is redefined as

Ne* ; eV
KeqR2 .

FIG. 15. Predicted dimensionless flow rate according to the spring model, versus gap (positive and
negatives) and modified elasticity number Ne*. The continuous line represents the states previously
found in the case of rigid rolls.
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FIG. 16. Dimensionless flow rate predictions of spring model at different loading force at Ne* 5

1027. The line represents the power-law fit Q P W 20.34 at high loading force.

For the plane strain model, Keq is assumed to be proportional to the ratio of elastic
modulus and roll cover thickness, i.e., Keq 5 aE/L. For the spring model Keq is
simply the spring constant K.

Figure 17 shows the dimensionless flow rate q* ; Q/2VR at a gap clearance of
H0/R 5 21023 (negative gap), roll cover thickness L/R 5 0.1, and different modified
elasticity numbers Ne* predicted by the spring and the plane-strain models. If a 5

1, i.e., Keq 5 E/L, the spring model overpredicts the flow rate at all values of Ne*.
However, if a is set arbitrarily equal to 2, i.e., Keq 5 2E/L, the flow rates predicted

FIG. 17. Comparison of the dimensionless flow rate q* versus modified elasticity numbers at
H0/R 5 (—) 1023 as predicted by the spring and plane-strain models of the roll cover. For the spring
model Ne* 5 eV/KR2. For the plane-strain model Ne* 5 eVL/aER2.
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FIG. 18. Comparison of the dimensionless flow rate q* versus gaps at Ne* 5 1.25 3 1027, as predicted
by the spring and plane-strain models of the roll cover.

by the spring formulation almost coincide with the ones yielded by the complete
non-linear, plane-strain elasticity formulation. Therefore, the constant K in the
spring model should be set equal to twice Young’s modulus divided by the cover
thickness:

K 5 2 3 E/L.

To check if this approximation is still valid at different gaps and roll cover
thicknesses, Fig. 18 compares the dimensionless flow rates q* predicted by the two
deformation models, as functions of center-to-center distance H0/R at modified
elasticity numbers Ne* 5 1.25 3 1027 and 2.5 3 1027. The predictions of the plane-
strain model were at L/R 5 0.1 and L/R 5 0.2, respectively, and are for Keq 5

2 3 E/L. The predicted flow rate between the two models is very close at the entire
range of gaps examined.

Figures 17 and 18 illustrate that although much simpler, the spring model can
predict flow rates close to those from the more complete plane-strain model if the
appropriate spring constant is used.

Up to this point, only flow rates have been compared. Figure 19 shows the
deformable roll profiles at H0/R 5 (2)2 3 1023 and Ne* 5 5 3 1027 as predicted
by the spring and plane-strain models. Again, the spring constant was set to K 5

2 3 E/L. The predicted roll profiles are close. However, the elongated and almost
uniform gap formed between the rolls is slightly larger when the plane-strain model
is used, as expected. The main reason for that is the incompressibility of the roll
cover.
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FIG. 19. Deformable roll profiles predicted by the spring and plane-strain models at H0/R 5 (—)
2 3 1023 and Ne 5 5 3 1027.

The main shortcoming of the spring model is that the velocity distribution it
predicts along the surface of the deformable roll differs greatly from the one
predicted with the plane-strain formulation, as depicted in Fig. 20. With the spring
model, the velocity distribution is almost uniform along the resilient roll. When the
plane-strain formulation is used, the velocity of the roll varies substantially along
the roll surface. At the conditions shown in the plot, the surface velocity at the
plane of the two roll centers (X/R 5 0) is 10% larger than what it would be if the
roll were rigid. This variation of the surface velocity is caused by the azimuthal
deformation due to the incompressibility of the cover, which cannot be described
by the simple spring model. Even though both rolls have the same angular speed,
the velocity ratio at the center-to-center plane was 1.1. This velocity ratio can lead

FIG. 20. Velocity distribution along the deformable wall predicted by the spring model and the
plane-strain model.
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to important differences in the amount of liquid carried out by each roll in the case
of a forward film split flow.

5. FINAL REMARKS

Flow between a rigid and a deformable roll was analyzed. The viscous liquid
flow and the elastic deformation of the roll cover are coupled, which constitutes
an elastohydrodynamic action.

A complete two-dimensional formulation of the situation was used for both the
liquid flow and for the elastic roll cover. The liquid flow between the rotating rolls
was described by the Navier–Stokes system of equations. The deformation of the
compliant roll cover was described by a plane-strain model of incompressible
Mooney–Rivlin material (non-linear elasticity). The approximate and computation-
ally cheaper approach, which consisted of a series of independent radial springs to
describe the roll cover deformation, was also explored. The merits and disadvantages
of both deformation descriptions were discussed. The results reveal the range of
parameters at which the spring model provides a good approximation and the
relation between the empirical spring constant to the roll cover properties (thickness
and elastic modulus).

The resulting system of partial differential equations was solved by Galerkin’s
method and finite element basis functions. Newton’s method was used to solve the
non-linear set of algebraic equations obtained by discretization of the problem.
With this fully coupled approach, convergence was achieved in four to five iterations,
provided a good initial guess was employed at each condition. This was accomplished
by using pseudo-arc-length continuation strategy, which also permitted the computa-
tion of solutions around turning points.

The theoretical predictions reveal how the flow rate varies with the roll cover
hardness and the center-to-center distance. The results illustrate how a deformable
roll can be used to obtain thin coated layers with much less sensitivity to roll runout
than those obtained with rigid rolls.
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